Book Image

Learning OpenCV 5 Computer Vision with Python, Fourth Edition - Fourth Edition

By : Joseph Howse, Joe Minichino
5 (2)
Book Image

Learning OpenCV 5 Computer Vision with Python, Fourth Edition - Fourth Edition

5 (2)
By: Joseph Howse, Joe Minichino

Overview of this book

Computer vision is a rapidly evolving science in the field of artificial intelligence, encompassing diverse use cases and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You'll be able to put theory into practice by building apps with OpenCV 5 and Python 3. You'll start by setting up OpenCV 5 with Python 3 on various platforms. Next, you'll learn how to perform basic operations such as reading, writing, manipulating, and displaying images, videos, and camera feeds. From taking you through image processing, video analysis, depth estimation, and segmentation, to helping you gain practice by building a GUI app, this book ensures you'll have opportunities for hands-on activities. You'll tackle two popular challenges: face detection and face recognition. You'll also learn about object classification and machine learning, which will enable you to create and use object detectors and even track moving objects in real time. Later, you'll develop your skills in augmented reality and real-world 3D navigation. Finally, you'll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age, and you'll deploy your solutions to the Cloud. By the end of this book, you'll have the skills you need to execute real-world computer vision projects.
Table of Contents (12 chapters)
Free Chapter
1
Learning OpenCV 5 Computer Vision with Python, Fourth Edition: Tackle tools, techniques, and algorithms for computer vision and machine learning
Appendix A: Bending Color Space with the Curves Filter

Conceptualizing Haar cascades

When we talk about classifying objects and tracking their location, what exactly are we hoping to pinpoint? What constitutes a recognizable part of an object?

Photographic images, even from a webcam, may contain a lot of detail for our (human) viewing pleasure. However, image detail tends to be unstable with respect to variations in lighting, viewing angle, viewing distance, camera shake, and digital noise. Moreover, even real differences in physical detail might not interest us for classification. Joseph Howse, one of this book's authors, was taught in school that no two snowflakes look alike under a microscope. Fortunately, as a Canadian child, he had already learned how to recognize snowflakes without a microscope, as the similarities are more obvious in bulk.

Hence, having some means of abstracting image detail is useful in producing stable classification and tracking results. The abstractions are called features, which are said to be extracted from...