Book Image

Learning OpenCV 5 Computer Vision with Python, Fourth Edition - Fourth Edition

By : Joseph Howse, Joe Minichino
5 (2)
Book Image

Learning OpenCV 5 Computer Vision with Python, Fourth Edition - Fourth Edition

5 (2)
By: Joseph Howse, Joe Minichino

Overview of this book

Computer vision is a rapidly evolving science in the field of artificial intelligence, encompassing diverse use cases and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You'll be able to put theory into practice by building apps with OpenCV 5 and Python 3. You'll start by setting up OpenCV 5 with Python 3 on various platforms. Next, you'll learn how to perform basic operations such as reading, writing, manipulating, and displaying images, videos, and camera feeds. From taking you through image processing, video analysis, depth estimation, and segmentation, to helping you gain practice by building a GUI app, this book ensures you'll have opportunities for hands-on activities. You'll tackle two popular challenges: face detection and face recognition. You'll also learn about object classification and machine learning, which will enable you to create and use object detectors and even track moving objects in real time. Later, you'll develop your skills in augmented reality and real-world 3D navigation. Finally, you'll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age, and you'll deploy your solutions to the Cloud. By the end of this book, you'll have the skills you need to execute real-world computer vision projects.
Table of Contents (12 chapters)
Free Chapter
1
Learning OpenCV 5 Computer Vision with Python, Fourth Edition: Tackle tools, techniques, and algorithms for computer vision and machine learning
Appendix A: Bending Color Space with the Curves Filter

Summary

In this chapter, we learned about detecting keypoints, computing keypoint descriptors, matching these descriptors, filtering out bad matches, and finding the homography between two sets of matching keypoints. We explored a number of algorithms that are available in OpenCV that can be used to accomplish these tasks, and we applied these algorithms to a variety of images and use cases.

If we combine our new knowledge of keypoints with additional knowledge about cameras and perspective, we can track objects in 3D space. This will be the topic of Chapter 9, Camera Models and Augmented Reality. You can skip ahead to that chapter if you are particularly keen to reach the third dimension.

If, instead, you think the next logical step is to round off your knowledge of two-dimensional solutions for object detection, recognition, and tracking, you can continue sequentially with Chapter 7, Building Custom Object Detectors, and then Chapter 8, Tracking Objects. It is good to know of a combination...