Book Image

Solidity Programming Essentials. - Second Edition

By : Ritesh Modi
Book Image

Solidity Programming Essentials. - Second Edition

By: Ritesh Modi

Overview of this book

Solidity is a high-level language for writing smart contracts, and the syntax has large similarities with JavaScript, thereby making it easier for developers to learn, design, compile, and deploy smart contracts on large blockchain ecosystems including Ethereum and Polygon among others. This book guides you in understanding Solidity programming from scratch. The book starts with step-by-step instructions for the installation of multiple tools and private blockchain, along with foundational concepts such as variables, data types, and programming constructs. You’ll then explore contracts based on an object-oriented paradigm, including the usage of constructors, interfaces, libraries, and abstract contracts. The following chapters help you get to grips with testing and debugging smart contracts. As you advance, you’ll learn about advanced concepts like assembly programming, advanced interfaces, usage of recovery, and error handling using try-catch blocks. You’ll also explore multiple design patterns for smart contracts alongside developing secure smart contracts, as well as gain a solid understanding of writing upgradable smart concepts and data modeling. Finally, you’ll discover how to create your own ERC20 and NFT tokens from scratch. By the end of this book, you will be able to write, deploy, and test smart contracts in Ethereum.
Table of Contents (21 chapters)
1
Part 1: The Fundamentals of Solidity and Ethereum
7
Part 2: Writing Robust Smart Contracts
13
Part 3: Advanced Smart Contracts

Blocks

Blocks are an important concept in Ethereum. They are containers for a transaction. A block contains multiple transactions. Each block has a different number of transactions based on the gas limit and block size. The gas limit will be explained in detail in later sections. The blocks are chained together to form a blockchain. Each block has a parent block, and it stores the hash of the parent block in its header. Only the first block, known as the genesis block, does not have a parent.

A typical block in Ethereum is shown in the following screenshot:

Figure 1.12 – A typical block in Ethereum

Figure 1.12 – A typical block in Ethereum

There are a lot of properties associated with a block, providing insights and metadata about it, and the following are some of the important properties along with their descriptions:

  • The difficulty property determines the complexity of the puzzle/challenge given to miners for this block.
  • The gasLimit property determines the maximum gas allowed. This helps in determining how many transactions can be part of the block.
  • The gasUsed property refers to the actual gas used for this block for executing all transactions in it.
  • The hash property refers to the hash of the block.
  • The nonce property refers to the number that helps in solving the challenge.
  • The miner property is the account identifier of the miner, also known as coinbase or etherbase.
  • The number property is the sequential number of this block on the chain.
  • The parentHash property refers to the parent block's hash.
  • The receiptsRoot, stateRoot, and transactionsRoot properties refer to the Merkle trees discussed during the mining process.
  • The transactions property refers to an array of transactions that are part of this block.
  • The totalDifficulty property refers to the total difficulty of the chain.