Book Image

Data Wrangling with R

By : Gustavo R Santos
Book Image

Data Wrangling with R

By: Gustavo R Santos

Overview of this book

In this information era, where large volumes of data are being generated every day, companies want to get a better grip on it to perform more efficiently than before. This is where skillful data analysts and data scientists come into play, wrangling and exploring data to generate valuable business insights. In order to do that, you’ll need plenty of tools that enable you to extract the most useful knowledge from data. Data Wrangling with R will help you to gain a deep understanding of ways to wrangle and prepare datasets for exploration, analysis, and modeling. This data book enables you to get your data ready for more optimized analyses, develop your first data model, and perform effective data visualization. The book begins by teaching you how to load and explore datasets. Then, you’ll get to grips with the modern concepts and tools of data wrangling. As data wrangling and visualization are intrinsically connected, you’ll go over best practices to plot data and extract insights from it. The chapters are designed in a way to help you learn all about modeling, as you will go through the construction of a data science project from end to end, and become familiar with the built-in RStudio, including an application built with Shiny dashboards. By the end of this book, you’ll have learned how to create your first data model and build an application with Shiny in R.
Table of Contents (21 chapters)
1
Part 1: Load and Explore Data
5
Part 2: Data Wrangling
12
Part 3: Data Visualization
16
Part 4: Modeling

Summary

In this chapter, we learned a little about the history of data wrangling and became familiar with its definition. Every task performed in order to transform or enhance the data and to make it ready for analysis and modeling is what we call data wrangling or data munging.

We also discussed some topics stating the importance of wrangling data before modeling it. A model is a simplified representation of reality, and an algorithm is like a student that needs to understand that reality to give us the best answer about the subject matter. If we teach this student with bad data, we cannot expect to receive a good answer. A model is as good as its input data.

Continuing further in the chapter, we reviewed the benefits of data wrangling, proving that we can improve the quality of our data, resulting in faster results and better outcomes.

In the final sections, we reviewed the basic steps of data wrangling and learned more about three of the most commonly used frameworks for Data Science – KDD, SEMMA, and CRISP-DM. I recommend that you review more information about them to have a holistic view of the life cycle of a Data Science project.

Now, it is important to notice how these three frameworks preach the selection of a representative dataset or subset of data. A nice example is given by Aurélien Géron (Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow, 2nd edition, (2019): 32-33). Suppose you want to build an app to take pictures of flowers and recognize and classify them. You could go to the internet and download thousands of pictures; however, they will probably not be representative of the kind of pictures that your model will receive from the app users. Ergo, the model could underperform. This example is relevant to illustrate the garbage in, garbage out idea. That is, if you don’t explore and understand your data thoroughly, you won’t know whether it is good enough for modeling.

The frameworks can lead the way, like a map, to explore, understand, and wrangle the data and to make it ready for modeling, decreasing the risk of having a frustrating outcome.

In the next chapter, let’s get our hands on R and start coding.