Book Image

Applying Math with Python - Second Edition

By : Sam Morley
Book Image

Applying Math with Python - Second Edition

By: Sam Morley

Overview of this book

The updated edition of Applying Math with Python will help you solve complex problems in a wide variety of mathematical fields in simple and efficient ways. Old recipes have been revised for new libraries and several recipes have been added to demonstrate new tools such as JAX. You'll start by refreshing your knowledge of several core mathematical fields and learn about packages covered in Python's scientific stack, including NumPy, SciPy, and Matplotlib. As you progress, you'll gradually get to grips with more advanced topics of calculus, probability, and networks (graph theory). Once you’ve developed a solid base in these topics, you’ll have the confidence to set out on math adventures with Python as you explore Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.
Table of Contents (13 chapters)

Changing the random number generator

The random module in NumPy provides several alternatives to the default PRNG, which uses a 128-bit permutation congruential generator. While this is a good general-purpose random number generator, it might not be sufficient for your particular needs. For example, this algorithm is very different from the one used in Python’s internal random number generator. We will follow the guidelines for best practice set out in the NumPy documentation for running repeatable but suitably random simulations.

In this recipe, we will show you how to change to an alternative PRNG and how to use seeds effectively in your programs.

Getting ready

As usual, we import NumPy under the np alias. Since we will be using multiple items from the random package, we import that module from NumPy, too, using the following code:

from numpy import random

You will need to select one of the alternative random number generators that are provided by NumPy (or...