Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying LLM Design Patterns
  • Table Of Contents Toc
LLM Design Patterns

LLM Design Patterns

By : Ken Huang
3.5 (2)
close
close
LLM Design Patterns

LLM Design Patterns

3.5 (2)
By: Ken Huang

Overview of this book

This practical guide for AI professionals enables you to build on the power of design patterns to develop robust, scalable, and efficient large language models (LLMs). Written by a global AI expert and popular author driving standards and innovation in Generative AI, security, and strategy, this book covers the end-to-end lifecycle of LLM development and introduces reusable architectural and engineering solutions to common challenges in data handling, model training, evaluation, and deployment. You’ll learn to clean, augment, and annotate large-scale datasets, architect modular training pipelines, and optimize models using hyperparameter tuning, pruning, and quantization. The chapters help you explore regularization, checkpointing, fine-tuning, and advanced prompting methods, such as reason-and-act, as well as implement reflection, multi-step reasoning, and tool use for intelligent task completion. The book also highlights Retrieval-Augmented Generation (RAG), graph-based retrieval, interpretability, fairness, and RLHF, culminating in the creation of agentic LLM systems. By the end of this book, you’ll be equipped with the knowledge and tools to build next-generation LLMs that are adaptable, efficient, safe, and aligned with human values.
Table of Contents (38 chapters)
close
close
Lock Free Chapter
1
Part 1: Introduction and Data Preparation
8
Part 2: Training and Optimization of Large Language Models
16
Part 3: Evaluation and Interpretation of Large Language Models
23
Part 4: Advanced Prompt Engineering Techniques
30
Part 5: Retrieval and Knowledge Integration in Large Language Models

Regularization

Regularization is a set of methods that constrain or modify the learning process to prevent the model from memorizing training data too precisely, encouraging it to learn more robust and generalizable patterns instead.

Regularization is a crucial aspect of training LLMs to prevent overfitting and improve generalization. Overfitting is detrimental because it causes a model to perform exceptionally well on training data while failing miserably on new, unseen data. When a model overfits, it essentially memorizes the noise and peculiarities of the training dataset, rather than learning generalizable patterns and relationships. This creates an illusion of high accuracy during development but leads to poor real-world performance, rendering the model ineffective for its intended purpose of making accurate predictions on novel inputs.

In this chapter, you’ll learn about different regularization techniques specifically tailored to LLMs. We’ll explore methods...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
LLM Design Patterns
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon