Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Data Science with Python[Instructor Edition]
  • Table Of Contents Toc
Data Science with Python[Instructor Edition]

Data Science with Python[Instructor Edition]

By : Mohamed Noordeen Alaudeen, Rohan Chopra, Aaron England, Lakshay Sharma
3 (1)
close
close
Data Science with Python[Instructor Edition]

Data Science with Python[Instructor Edition]

3 (1)
By: Mohamed Noordeen Alaudeen, Rohan Chopra, Aaron England, Lakshay Sharma

Overview of this book

Data Science with Python begins by introducing you to data science and then teaches you to install the packages you need to create a data science coding environment. You will learn three major techniques in machine learning: unsupervised learning, supervised learning, and reinforcement learning. You will also explore basic classification and regression techniques, such as support vector machines, decision trees, and logistic regression. As you make your way through lessons, you will study the basic functions, data structures, and syntax of the Python language that are used to handle large datasets with ease. You will learn about NumPy and pandas libraries for matrix calculations and data manipulation, study how to use Matplotlib to create highly customizable visualizations, and apply the boosting algorithm XGBoost to make predictions. In the concluding lessons, you will explore convolutional neural networks (CNNs), deep learning algorithms used to predict what is in an image. You will also understand how to feed human sentences to a neural network, make the model process contextual information, and create human language processing systems to predict the outcome. By the end of this course, you will be able to understand and implement any new data science algorithm and have the confidence to experiment with tools or libraries other than those covered in the course.
Table of Contents (10 chapters)
close
close

Summary

In this chapter, we used the Python plotting library Matplotlib to create, customize, and save plots using the functional approach. We then covered the importance of a descriptive title and created our own descriptive, programmatic titles. However, the functional approach does not create a callable figure object and it does not return subplots. Thus, to create a callable figure object with the potential of numerous subplots, we created, customized, and saved our plots using the object-oriented approach. Plotting needs can vary analysis to analysis, so covering every possible plot in this chapter is not practical. To create powerful plots that meet the needs of each individual analysis, it is imperative to become familiar with the documentation and examples found on the Matplotlib documentation page.

In the subsequent chapter, we will apply some of these plotting techniques as we dive into machine learning using scikit-learn.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Data Science with Python[Instructor Edition]
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon