Book Image

Deep Learning with R for Beginners

By : Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado
Book Image

Deep Learning with R for Beginners

By: Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado

Overview of this book

Deep learning has a range of practical applications in several domains, while R is the preferred language for designing and deploying deep learning models. This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you’ll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The Learning Path will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you’ll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R. By the end of this Learning Path, you’ll be well-versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects.
Table of Contents (23 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Summary


In this chapter, we introduced different architectures for recurrent neural networks, and pointed out some of their limitations and capabilities. By introducing a naive Markovian model, we compared the efficiency of introducing such complicated architectures. When applied to the text generation problem, we saw that these different architectures had a noticeable improvement in the quality of the predictions. For training networks, we introduced different methods. The classical backpropagation algorithm and other gradient-free methods that are useful to solve black-box optimization problems.