Book Image

Deep Learning with R for Beginners

By : Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado
Book Image

Deep Learning with R for Beginners

By: Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado

Overview of this book

Deep learning has a range of practical applications in several domains, while R is the preferred language for designing and deploying deep learning models. This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you’ll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The Learning Path will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you’ll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R. By the end of this Learning Path, you’ll be well-versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects.
Table of Contents (23 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Using auto-encoders for anomaly detection


Now that we have built an auto-encoder and accessed the features of the inner layers, we will move on to an example of how auto-encoders can be used for anomaly detection. The premise here is quite simple: we take the reconstructed outputs from the decoder and see which instances have the most error, that is, which instances are the most difficult for the decoder to reconstruct. The code that is used here is in Chapter9/anomaly.R, and we will be using the UCI HAR dataset that we have already been introduced to in Chapter 2, Training a Prediction Model. If you have not already downloaded the data, go back to that chapter for instructions on how to do so.. The first part of the code loads the data, and we subset the features to only use the ones with mean, sd, and skewness in the feature names:

library(keras)
library(ggplot2)
train.x <- read.table("UCI HAR Dataset/train/X_train.txt")
train.y <- read.table("UCI HAR Dataset/train/y_train.txt")[...