Book Image

Essential Statistics for Non-STEM Data Analysts

By : Rongpeng Li
Book Image

Essential Statistics for Non-STEM Data Analysts

By: Rongpeng Li

Overview of this book

Statistics remain the backbone of modern analysis tasks, helping you to interpret the results produced by data science pipelines. This book is a detailed guide covering the math and various statistical methods required for undertaking data science tasks. The book starts by showing you how to preprocess data and inspect distributions and correlations from a statistical perspective. You’ll then get to grips with the fundamentals of statistical analysis and apply its concepts to real-world datasets. As you advance, you’ll find out how statistical concepts emerge from different stages of data science pipelines, understand the summary of datasets in the language of statistics, and use it to build a solid foundation for robust data products such as explanatory models and predictive models. Once you’ve uncovered the working mechanism of data science algorithms, you’ll cover essential concepts for efficient data collection, cleaning, mining, visualization, and analysis. Finally, you’ll implement statistical methods in key machine learning tasks such as classification, regression, tree-based methods, and ensemble learning. By the end of this Essential Statistics for Non-STEM Data Analysts book, you’ll have learned how to build and present a self-contained, statistics-backed data product to meet your business goals.
Table of Contents (19 chapters)
1
Section 1: Getting Started with Statistics for Data Science
5
Section 2: Essentials of Statistical Analysis
10
Section 3: Statistics for Machine Learning
15
Section 4: Appendix

Advanced visualization customization

In this section, you are going to learn how to customize the plots from two perspectives, the geometry and the aesthetics. You will see examples and understand how the customization works.

Customizing the geometry

There isn't enough time nor space to cover every detail of geometry customization. Let's learn by understanding and following examples instead.

Example 1 – axis-sharing and subplots

Continuing from the previous example, let's say you want the birth rate and the population change to be plotted on the same graph. However, the numerical values of the two quantities are drastically different, making the birth rate basically indistinguishable. There are two ways to solve this issue. Let's look at each of the ways individually.

Axis-sharing

We can make use of both the left-hand y axis and the right-hand Y axis to represent different scales. The following code snippet copies the axes with the twinx...