Book Image

Mastering Blockchain - Third Edition

By : Imran Bashir
Book Image

Mastering Blockchain - Third Edition

By: Imran Bashir

Overview of this book

Blockchain is the backbone of cryptocurrencies, with applications in finance, government, media, and other industries. With a legacy of providing technologists with executable insights, this new edition of Mastering Blockchain is thoroughly revised and updated to the latest blockchain research with four new chapters on consensus algorithms, Serenity (the update that will introduce Ethereum 2.0), tokenization, and enterprise blockchains. This book covers the basics, including blockchain’s technical underpinnings, cryptography and consensus protocols. It also provides you with expert knowledge on decentralization, decentralized application development on Ethereum, Bitcoin, alternative coins, smart contracts, alternative blockchains, and Hyperledger. Further, you will explore blockchain solutions beyond cryptocurrencies such as the Internet of Things with blockchain, enterprise blockchains, tokenization using blockchain, and consider the future scope of this fascinating and disruptive technology. By the end of this book, you will have gained a thorough comprehension of the various facets of blockchain and understand their potential in diverse real-world scenarios.
Table of Contents (24 chapters)
23
Index

Advanced Encryption Standard (AES)

In 2001, after an open competition, an encryption algorithm named Rijndael invented by cryptographers Joan Daemen and Vincent Rijmen was standardized as AES with minor modifications by NIST. So far, no attack has been found against AES that is more effective than the brute-force method. The original version of Rijndael permits different key and block sizes of 128 bits, 192 bits, and 256 bits. In the AES standard, however, only a 128-bit block size is allowed. However, key sizes of 128 bits, 192 bits, and 256 bits are permissible.

How AES works

During AES algorithm processing, a 4 × 4 array of bytes known as the state is modified using multiple rounds. Full encryption requires 10 to 14 rounds, depending on the size of the key. The following table shows the key sizes and the required number of rounds:

Key size

Number of rounds...