Book Image

OpenGL 4 Shading Language Cookbook - Second Edition

By : David Wolff
Book Image

OpenGL 4 Shading Language Cookbook - Second Edition

By: David Wolff

Overview of this book

OpenGL Shading Language (GLSL) is a programming language used for customizing parts of the OpenGL graphics pipeline that were formerly fixed-function, and are executed directly on the GPU. It provides programmers with unprecedented flexibility for implementing effects and optimizations utilizing the power of modern GPUs. With Version 4, the language has been further refined to provide programmers with greater power and flexibility, with new stages such as tessellation and compute. OpenGL 4 Shading Language Cookbook provides easy-to-follow examples that first walk you through the theory and background behind each technique, and then go on to provide and explain the GLSL and OpenGL code needed to implement it. Beginner level through to advanced techniques are presented including topics such as texturing, screen-space techniques, lighting, shading, tessellation shaders, geometry shaders, compute shaders, and shadows. OpenGL Shading Language 4 Cookbook is a practical guide that takes you from the fundamentals of programming with modern GLSL and OpenGL, through to advanced techniques. The recipes build upon each other and take you quickly from novice to advanced level code. You'll see essential lighting and shading techniques; examples that demonstrate how to make use of textures for a wide variety of effects and as part of other techniques; examples of screen-space techniques including HDR rendering, bloom, and blur; shadowing techniques; tessellation, geometry, and compute shaders; how to use noise effectively; and animation with particle systems. OpenGL Shading Language 4 Cookbook provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer graphics applications.
Table of Contents (17 chapters)
OpenGL 4 Shading Language Cookbook Second Edition
About the Author
About the Reviewers

Applying a projected texture

We can apply a texture to the objects in a scene as if the texture was a projection from a hypothetical "slide projector" located somewhere within the scene. This technique is often called projective texture mapping and produces a very nice effect.

The following images show an example of projective texture mapping. The flower texture on the left (Stan Shebs via Wikimedia Commons) is projected onto the teapot and plane beneath.

To project a texture onto a surface, all we need to do is determine the texture coordinates based on the relative position of the surface location and the source of the projection (the "slide projector"). An easy way to do this is to think of the projector as a camera located somewhere within the scene. In the same way that we would define an OpenGL camera, we define a coordinate system centered at the projector's location, and a view matrix (V) that converts coordinates to the projector's coordinate system. Next, we'll define a perspective...