Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On GPU Programming with Python and CUDA
  • Table Of Contents Toc
Hands-On GPU Programming with Python and CUDA

Hands-On GPU Programming with Python and CUDA

By : Tuomanen
5 (7)
close
close
Hands-On GPU Programming with Python and CUDA

Hands-On GPU Programming with Python and CUDA

5 (7)
By: Tuomanen

Overview of this book

Hands-On GPU Programming with Python and CUDA hits the ground running: you’ll start by learning how to apply Amdahl’s Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You’ll then see how to “query” the GPU’s features and copy arrays of data to and from the GPU’s own memory. As you make your way through the book, you’ll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You’ll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you’ll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS. With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You’ll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you’ll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain. By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing.
Table of Contents (15 chapters)
close
close

Vectorized data types and memory access

We will now look at CUDA's Vectorized Data Types. These are vectorized versions of the standard datatypes, such as int or double, in that they can store multiple values. There are vectorized versions of the 32-bit types of up to size 4 (for example, int2, int3, int4, and float4), while 64-bit variables can only be vectorized to be twice their original size (for example, double2 and long2). For a size 4 vectorized variable, we access each individual element using the C "struct" notation for the members x, y, z, and w, while we use x,y, and z for a 3-member variable and just x and y for a 2-member variable.

These may seem pointless right now, but these datatypes can be used to improve the performance of loading arrays from the global memory. Now, let's do a small test to see how we can load some int4 variables from an...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On GPU Programming with Python and CUDA
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon