Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On GPU Programming with Python and CUDA
  • Table Of Contents Toc
Hands-On GPU Programming with Python and CUDA

Hands-On GPU Programming with Python and CUDA

By : Tuomanen
5 (7)
close
close
Hands-On GPU Programming with Python and CUDA

Hands-On GPU Programming with Python and CUDA

5 (7)
By: Tuomanen

Overview of this book

Hands-On GPU Programming with Python and CUDA hits the ground running: you’ll start by learning how to apply Amdahl’s Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You’ll then see how to “query” the GPU’s features and copy arrays of data to and from the GPU’s own memory. As you make your way through the book, you’ll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You’ll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you’ll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS. With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You’ll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you’ll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain. By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing.
Table of Contents (15 chapters)
close
close

Using the CUDA Libraries with Scikit-CUDA

In this chapter, we will be taking a tour of three of the standard CUDA libraries intended for streamlined numerical and scientific computation. The first that we will look at is cuBLAS, which is NVIDIA's implementation of the Basic Linear Algebra Subprograms (BLAS) specification for CUDA. (cuBLAS is NVIDIA's answer to various optimized, CPU-based implementations of BLAS, such as the free/open source OpenBLAS or Intel's proprietary Math Kernel Library.) The next library that we will look at is cuFFT, which can perform virtually every variation of the fast Fourier transform (FFT) on the GPU. We'll look at how we can use cuFFT for filtering in image processing in particular. We will then look at cuSolver, which can perform more involved linear algebra operations than those featured in cuBLAS, such as singular value decomposition...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On GPU Programming with Python and CUDA
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon