Book Image

OpenGL 4 Shading Language Cookbook - Second Edition

By : David Wolff, David A Wolff
Book Image

OpenGL 4 Shading Language Cookbook - Second Edition

By: David Wolff, David A Wolff

Overview of this book

OpenGL Shading Language (GLSL) is a programming language used for customizing parts of the OpenGL graphics pipeline that were formerly fixed-function, and are executed directly on the GPU. It provides programmers with unprecedented flexibility for implementing effects and optimizations utilizing the power of modern GPUs. With Version 4, the language has been further refined to provide programmers with greater power and flexibility, with new stages such as tessellation and compute. OpenGL 4 Shading Language Cookbook provides easy-to-follow examples that first walk you through the theory and background behind each technique, and then go on to provide and explain the GLSL and OpenGL code needed to implement it. Beginner level through to advanced techniques are presented including topics such as texturing, screen-space techniques, lighting, shading, tessellation shaders, geometry shaders, compute shaders, and shadows. OpenGL Shading Language 4 Cookbook is a practical guide that takes you from the fundamentals of programming with modern GLSL and OpenGL, through to advanced techniques. The recipes build upon each other and take you quickly from novice to advanced level code. You'll see essential lighting and shading techniques; examples that demonstrate how to make use of textures for a wide variety of effects and as part of other techniques; examples of screen-space techniques including HDR rendering, bloom, and blur; shadowing techniques; tessellation, geometry, and compute shaders; how to use noise effectively; and animation with particle systems. OpenGL Shading Language 4 Cookbook provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer graphics applications.
Table of Contents (17 chapters)
OpenGL 4 Shading Language Cookbook Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Introduction


Shaders provide us with the ability to leverage the massive parallelism offered by modern graphics processors. Since they have the ability to transform the vertex positions, they can be used to implement animation directly within the shaders themselves. This can provide a bump in efficiency if the animation algorithm can be parallelized appropriately for execution within the shader.

If a shader is to help with animation, it must not only compute the positions, but often we need to write the updated positions for use in the next frame. Shaders were not originally designed to write to arbitrary buffers (except of course the framebuffer). However, with recent versions, OpenGL provides the ability to do so via shader storage buffer objects and image load/store. As of OpenGL 3.0, we can also send the values of the vertex or geometry shader's output variables to an arbitrary buffer (or buffers). This feature is called Transform Feedback, and is particularly useful for particle systems...