Book Image

ROS Programming: Building Powerful Robots

By : Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph
Book Image

ROS Programming: Building Powerful Robots

By: Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph

Overview of this book

This learning path is designed to help you program and build your robots using open source ROS libraries and tools. We start with the installation and basic concepts, then continue with the more complex modules available in ROS, such as sensor and actuator integration (drivers), navigation and mapping (so you can create an autonomous mobile robot), manipulation, computer vision, perception in 3D with PCL, and more. We then discuss advanced concepts in robotics and how to program using ROS. You'll get a deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. We'll go through great projects such as building a self-driving car, an autonomous mobile robot, and image recognition using deep learning and ROS. You can find beginner, intermediate, and expert ROS robotics applications inside! It includes content from the following Packt products: ? Effective Robotics Programming with ROS - Third Edition ? Mastering ROS for Robotics Programming ? ROS Robotics Projects
Table of Contents (37 chapters)
Title page
Copyright and Credits
Packt Upsell
Preface
Bibliography
Index

Creating a base controller


A base controller is an important element in the navigation stack because it is the only way to effectively control your robot. It communicates directly with the electronics of your robot.

ROS does not provide a standard base controller, so you must write a base controller for your mobile platform.

Your robot has to be controlled with the message type geometry_msgs/Twist. This message was used on the Odometry message that we saw before.

So, your base controller must subscribe to a topic with the name cmd_vel, and must generate the correct commands to move the platform with the correct linear and angular velocities.

We are now going to recall the structure of this message. Type the following command in a shell to see the structure:

$ rosmsg show geometry_msgs/Twist

The output of this command is as follows:

The vector with the name linear indicates the linear velocity for the axes x, y, and z. The vector with the name angular is for the angular velocity on the axes.

For...