Book Image

Computer Architecture with Python and ARM

By : Alan Clements
Book Image

Computer Architecture with Python and ARM

By: Alan Clements

Overview of this book

This comprehensive guide offers a unique and immersive learning experience by combining Python programming with ARM architecture. Starting with an introduction to computer architecture and the flow of data within a computer system, you’ll progress to building your own interpreter using Python. You’ll see how this foundation enables the simulation of computer operations and learn ways to enhance a simulator by adding new instructions and displaying improved results. As you advance, you’ll explore the TC1 Assembler and Simulator Program to gain insights into instruction analysis and explore practical examples of simulators. This will help you build essential skills in understanding complex computer instructions, strengthening your grasp of computer architecture. Moreover, you’ll be introduced to the Raspberry Pi operating system, preparing you to delve into the detailed language of the ARM computer. This includes exploring the ARM instruction set architecture, data-processing instructions, subroutines, and the stack. With clear explanations, practical examples, and coding exercises, this resource will enable you to design and construct your own computer simulator, simulate assembly language programs, and leverage the Raspberry Pi for ARM programming.
Table of Contents (18 chapters)
1
Part 1: Using Python to Simulate a Computer
Free Chapter
2
Chapter 1: From Finite State Machines to Computers
10
Part 2: Using Raspberry Pi to Study a Real Computer Architecture

An assembly-level program

Having developed our computer a little further, in this section, we will show how a simple program is executed. Assume that this computer doesn’t provide three-address instructions (i.e., you can’t specify an operation with three registers and/or memory addresses) and we want to implement the high-level language operation Z = X + Y. Here, the plus symbol means arithmetic addition. An assembly language program that carries out this operation is given in the following code block. Remember that X, Y, and Z are symbolic names referring to the locations of the variables in memory. Logically, the store operation should be written STR Z,r2, with the destination operand on the left just like other instructions. By convention, it is written as STR r2,Z, with the source register on the left. This is a quirk of programming history:

   LDR  r2,X  Load data register r2 with the contents of memory location X

 ...