Book Image

Python Parallel Programming Cookbook

By : Giancarlo Zaccone
Book Image

Python Parallel Programming Cookbook

By: Giancarlo Zaccone

Overview of this book

This book will teach you parallel programming techniques using examples in Python and will help you explore the many ways in which you can write code that allows more than one process to happen at once. Starting with introducing you to the world of parallel computing, it moves on to cover the fundamentals in Python. This is followed by exploring the thread-based parallelism model using the Python threading module by synchronizing threads and using locks, mutex, semaphores queues, GIL, and the thread pool. Next you will be taught about process-based parallelism where you will synchronize processes using message passing along with learning about the performance of MPI Python Modules. You will then go on to learn the asynchronous parallel programming model using the Python asyncio module along with handling exceptions. Moving on, you will discover distributed computing with Python, and learn how to install a broker, use Celery Python Module, and create a worker. You will understand anche Pycsp, the Scoop framework, and disk modules in Python. Further on, you will learnGPU programming withPython using the PyCUDA module along with evaluating performance limitations.
Table of Contents (13 chapters)
Python Parallel Programming Cookbook
About the Author
About the Reviewers

How to use a thread in a subclass

To implement a new thread using the threading module, you have to do the following:

  • Define a new subclass of the Thread class

  • Override the _init__(self [,args]) method to add additional arguments

  • Then, you need to override the run(self [,args]) method to implement what the thread should do when it is started

Once you have created the new Thread subclass, you can create an instance of it and then start a new thread by invoking the start() method, which will, in turn, call the run() method.

How to do it…

To implement a thread in a subclass, we define the myThread class. It has two methods that must be overridden with the thread's arguments:

import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, counter):
        self.threadID = threadID = name
        self.counter = counter
    def run(self):
        print ("Starting " +