Book Image

Python Parallel Programming Cookbook

By : Giancarlo Zaccone
Book Image

Python Parallel Programming Cookbook

By: Giancarlo Zaccone

Overview of this book

This book will teach you parallel programming techniques using examples in Python and will help you explore the many ways in which you can write code that allows more than one process to happen at once. Starting with introducing you to the world of parallel computing, it moves on to cover the fundamentals in Python. This is followed by exploring the thread-based parallelism model using the Python threading module by synchronizing threads and using locks, mutex, semaphores queues, GIL, and the thread pool. Next you will be taught about process-based parallelism where you will synchronize processes using message passing along with learning about the performance of MPI Python Modules. You will then go on to learn the asynchronous parallel programming model using the Python asyncio module along with handling exceptions. Moving on, you will discover distributed computing with Python, and learn how to install a broker, use Celery Python Module, and create a worker. You will understand anche Pycsp, the Scoop framework, and disk modules in Python. Further on, you will learnGPU programming withPython using the PyCUDA module along with evaluating performance limitations.
Table of Contents (13 chapters)
Python Parallel Programming Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Thread synchronization with RLock


If we want only the thread that acquires a lock to release it, we must use a RLock() object. Similar to the Lock() object, the RLock() object has two methods: acquire() and release(). RLock() is useful when you want to have a thread-safe access from outside the class and use the same methods from inside the class.

How to do it…

In the sample code, we introduced the Box class, which has the methods add() and remove(), respectively, that provide us access to the execute() method so that we can perform the action of adding or deleting an item, respectively. Access to the execute() method is regulated by RLock():

import threading
import time

class Box(object):
    lock = threading.RLock()
    def __init__(self):
        self.total_items = 0
    def execute(self,n):
        Box.lock.acquire()
        self.total_items += n
        Box.lock.release()
    def add(self):
        Box.lock.acquire()
        self.execute(1)
        Box.lock.release()
    def remove(self...