Book Image

Hands-On Data Structures and Algorithms with Rust

By : Claus Matzinger
Book Image

Hands-On Data Structures and Algorithms with Rust

By: Claus Matzinger

Overview of this book

Rust has come a long way and is now utilized in several contexts. Its key strengths are its software infrastructure and resource-constrained applications, including desktop applications, servers, and performance-critical applications, not forgetting its importance in systems' programming. This book will be your guide as it takes you through implementing classic data structures and algorithms in Rust, helping you to get up and running as a confident Rust programmer. The book begins with an introduction to Rust data structures and algorithms, while also covering essential language constructs. You will learn how to store data using linked lists, arrays, stacks, and queues. You will also learn how to implement sorting and searching algorithms. You will learn how to attain high performance by implementing algorithms to string data types and implement hash structures in algorithm design. The book will examine algorithm analysis, including Brute Force algorithms, Greedy algorithms, Divide and Conquer algorithms, Dynamic Programming, and Backtracking. By the end of the book, you will have learned how to build components that are easy to understand, debug, and use in different applications.
Table of Contents (15 chapters)

Dynamic arrays

Arrays are another common way to store sequences of data. However, they lack a fundamental feature of lists: expansion. Arrays are efficient because they are a fixed-size container of length n, where every element has an equal size. Thus, any element can be reached by calculating the address to jump to using the simple formula start_address + n * element_size, making the entire process really fast. Additionally, this is very CPU cache-friendly, since the data is always at least one hop away.

The idea of using arrays to emulate list behavior has been around for a long time (Java 1.2 included an ArrayList class in 1998, but the idea is likely much older) and it is still a great way to achieve high performance in lists. Rust's Vec<T> uses the same technique. To start off, this is how an array list is built:

Consequently, this Rust implementation will have...