Book Image

Hands-On Data Structures and Algorithms with Rust

By : Claus Matzinger
Book Image

Hands-On Data Structures and Algorithms with Rust

By: Claus Matzinger

Overview of this book

Rust has come a long way and is now utilized in several contexts. Its key strengths are its software infrastructure and resource-constrained applications, including desktop applications, servers, and performance-critical applications, not forgetting its importance in systems' programming. This book will be your guide as it takes you through implementing classic data structures and algorithms in Rust, helping you to get up and running as a confident Rust programmer. The book begins with an introduction to Rust data structures and algorithms, while also covering essential language constructs. You will learn how to store data using linked lists, arrays, stacks, and queues. You will also learn how to implement sorting and searching algorithms. You will learn how to attain high performance by implementing algorithms to string data types and implement hash structures in algorithm design. The book will examine algorithm analysis, including Brute Force algorithms, Greedy algorithms, Divide and Conquer algorithms, Dynamic Programming, and Backtracking. By the end of the book, you will have learned how to build components that are easy to understand, debug, and use in different applications.
Table of Contents (15 chapters)

Heaps

Since binary trees are the most basic forms of trees, there are several variations designed for a specific purpose. Where the red-black tree is an advanced version of the initial tree, the binary heap is a version of the binary tree that does not facilitate search.

In fact, it has a specified purpose: finding the maximum or minimum value of a node. These heaps (min-heap or max-heap) are built in a way that the root node is always the value with the desired property (min or max) so it can be retrieved in constant time—that is, it always takes the same number of operations to fetch. Once fetched, the tree is restored in a way that the next operation works the same. How is this done though?

Heaps work, irrespective of whether they are min-heaps or max-heaps, because a node's children always have the same property as the entire tree. In a max-heap, this means that...