Book Image

A Practical Guide to Quantum Machine Learning and Quantum Optimization

By : Elías F. Combarro, Samuel González-Castillo
4.5 (2)
Book Image

A Practical Guide to Quantum Machine Learning and Quantum Optimization

4.5 (2)
By: Elías F. Combarro, Samuel González-Castillo

Overview of this book

This book provides deep coverage of modern quantum algorithms that can be used to solve real-world problems. You’ll be introduced to quantum computing using a hands-on approach with minimal prerequisites. You’ll discover many algorithms, tools, and methods to model optimization problems with the QUBO and Ising formalisms, and you will find out how to solve optimization problems with quantum annealing, QAOA, Grover Adaptive Search (GAS), and VQE. This book also shows you how to train quantum machine learning models, such as quantum support vector machines, quantum neural networks, and quantum generative adversarial networks. The book takes a straightforward path to help you learn about quantum algorithms, illustrating them with code that’s ready to be run on quantum simulators and actual quantum computers. You’ll also learn how to utilize programming frameworks such as IBM’s Qiskit, Xanadu’s PennyLane, and D-Wave’s Leap. Through reading this book, you will not only build a solid foundation of the fundamentals of quantum computing, but you will also become familiar with a wide variety of modern quantum algorithms. Moreover, this book will give you the programming skills that will enable you to start applying quantum methods to solve practical problems right away.
Table of Contents (27 chapters)
Part I: I, for One, Welcome our New Quantum Overlords
Part II: When Time is Gold: Tools for Quantum Optimization
Part III: A Match Made in Heaven: Quantum Machine Learning
Part IV: Afterword and Appendices
Chapter 13: Afterword: The Future of Quantum Computing
Appendix A: Complex Numbers
Appendix E: Production Notes

Part I
I, for One, Welcome our New Quantum Overlords

This part introduces the main concepts behind the quantum circuit model. You will learn how qubits store information, how to operate on that information with quantum gates, and how to obtain results with quantum measurements. You will also learn about some of the most important tools currently used to program quantum computers. In particular, we will discuss how to implement and execute quantum circuits with Qiskit and PennyLane.

This part includes the following chapters:

  • Chapter 1, Foundations of Quantum Computing

  • Chapter 2, The Tools of the Trade in Quantum Computing