Book Image

Windows Forensics Analyst Field Guide

By : Muhiballah Mohammed
5 (1)
Book Image

Windows Forensics Analyst Field Guide

5 (1)
By: Muhiballah Mohammed

Overview of this book

In this digitally driven era, safeguarding against relentless cyber threats is non-negotiable. This guide will enable you to enhance your skills as a digital forensic examiner by introducing you to cyber challenges that besiege modern entities. It will help you to understand the indispensable role adept digital forensic experts play in preventing these threats and equip you with proactive tools to defend against ever-evolving cyber onslaughts. The book begins by unveiling the intricacies of Windows operating systems and their foundational forensic artifacts, helping you master the art of streamlined investigative processes. From harnessing opensource tools for artifact collection to delving into advanced analysis, you’ll develop the skills needed to excel as a seasoned forensic examiner. As you advance, you’ll be able to effortlessly amass and dissect evidence to pinpoint the crux of issues. You’ll also delve into memory forensics tailored for Windows OS, decipher patterns within user data, and log and untangle intricate artifacts such as emails and browser data. By the end of this book, you’ll be able to robustly counter computer intrusions and breaches, untangle digital complexities with unwavering assurance, and stride confidently in the realm of digital forensics.
Table of Contents (14 chapters)
1
Part 1:Windows OS Forensics and Lab Preparation
7
Part 2:Windows OS Additional Artifacts

Windows VSS

VSS is a feature of Windows OSs that allows users to take snapshots of the state of their hard drive at a specific point in time. These snapshots, known as shadow copies, can be used to restore previous versions of files and directories in the event of data loss or corruption.

From a digital forensics perspective, volume shadow copies can be a valuable source of evidence. They provide a historical record of the state of the hard drive, including deleted and altered files. This information can be used to reconstruct the chain of events that occurred on the system and to identify any suspicious activity.

Volume shadow copies are stored as part of the VSS, which is a component of Windows that provides the functionality to create and manage shadow copies. VSS maintains a list of all shadow copies on a particular volume, allowing a user to select and restore the desired shadow copy.

One of the key benefits of volume shadow copies is that they are created automatically in the background, without the user’s intervention. This means that even if a user is unaware of the feature, it can still contain valuable evidence. In addition, the shadow copies are stored in a hidden and protected area of the hard drive, making it difficult for attackers to tamper with or destroy them.

When conducting a digital forensics examination, it is important to capture and preserve shadow copies to ensure that evidence remains intact. This can be done by creating a forensic image of a hard drive, which can then be analyzed for the presence of shadow copies. Once the shadow copies have been identified, the forensic examiner can extract and analyze the contents to identify any relevant information.

By using VSS, we can track changes in an New Technology File System (NTFS) filesystem. However, it does not store data every time a user changes a file; instead, it typically stores data once a week or as configured by a user on the machine.

When conducting a digital forensic investigation and searching for any suspicious or malicious activity, such as file deletion, we can utilize the VSS to obtain valuable forensic evidence. By comparing the original content of the hard drive with that stored in VSS, we can determine whether any changes or tampering have occurred.

To check VSS on your local machine, you can run CMD.exe with admin privileges and use the following command to list the shadow copies:

Vssadmin list shadows

The following screenshot shows the output of the preceding command:

Figure 1.6 – Vssadmin command output

Figure 1.6 – Vssadmin command output

Another useful trick is mounting a shadow copy using a Windows command line. On a live machine, we can manually mount and browse VSS data using the following mklink command, which creates a symbolic link to VSS. To do this, we need to invoke cmd.exe to use the mklink utility, as powershell.exe will not work:

mklink /d C:\shadow_copy_test \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\

Create a symbolic link to VSS by using the following command line:

Figure 1.7 – Mounting a volume shadow using mklink

Figure 1.7 – Mounting a volume shadow using mklink

Now, in the C drive, we can see a new symbolic link has been created and linked to the shadow copy, and we can browse it as a normal file:

Figure 1.8 – Mapped shadow copy in the C drive

Figure 1.8 – Mapped shadow copy in the C drive

There are other utilities and tools that help to mount VSS, such as Arsenal Image Mounter and VSCMount; however, we will leave the option to you to explore more tools and test them within the labs.

In the next section, we will discuss and prepare the lab environment for digital forensic investigations.