Book Image

TLS Cryptography In-Depth

By : Dr. Paul Duplys, Dr. Roland Schmitz
Book Image

TLS Cryptography In-Depth

By: Dr. Paul Duplys, Dr. Roland Schmitz

Overview of this book

TLS is the most widely used cryptographic protocol today, enabling e-commerce, online banking, and secure online communication. Written by Dr. Paul Duplys, Security, Privacy & Safety Research Lead at Bosch, and Dr. Roland Schmitz, Internet Security Professor at Stuttgart Media University, this book will help you gain a deep understanding of how and why TLS works, how past attacks on TLS were possible, and how vulnerabilities that enabled them were addressed in the latest TLS version 1.3. By exploring the inner workings of TLS, you’ll be able to configure it and use it more securely. Starting with the basic concepts, you’ll be led step by step through the world of modern cryptography, guided by the TLS protocol. As you advance, you’ll be learning about the necessary mathematical concepts from scratch. Topics such as public-key cryptography based on elliptic curves will be explained with a view on real-world applications in TLS. With easy-to-understand concepts, you’ll find out how secret keys are generated and exchanged in TLS, and how they are used to creating a secure channel between a client and a server. By the end of this book, you’ll have the knowledge to configure TLS servers securely. Moreover, you’ll have gained a deep knowledge of the cryptographic primitives that make up TLS.
Table of Contents (30 chapters)
1
Part I Getting Started
8
Part II Shaking Hands
16
Part III Off the Record
22
Part IV Bleeding Hearts and Biting Poodles
27
Bibliography
28
Index

11.4 Hash functions

A hash function is some function hash that maps an arbitrarily long input string onto an output string of fixed length n. More formally, we have hash : {0,1}→{0,1}n.

A simplistic example of a hash function would be a function that always outputs the last n bits of an arbitrary input string m. Or, if n = 1, one could use the bitwise XOR of all input bits as the hash value.

However, these simple hash functions do not possess any of the properties required from a cryptographically secure hash function. We will now first discuss these properties, and afterward look at how secure hash functions are actually constructed.

11.4.1 Collision resistance

Cryptographic hash functions are hard to construct because they have to fulfill stringent requirements, which are motivated by their use within Message Authentication Codes (MACs) (see Section 11.5, Message Authentication Codes) and Digital Signatures (see Chapter 9, Digital Signatures).

Recall, for example...