Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Interprocess communication


While locks are one of the most common synchronization primitives that are used for communication among threads, pipes and queues are the main way of communicating between different processes. Specifically, they provide message-passing options to facilitate communication between processes—pipes for connections between two processes and queues for multiple producers and consumers.

In this section, we will be exploring the usage of queues, specifically the Queue class from the multiprocessing module. The implementation of the Queue class is, in fact, both thread-and process-safe, and we have already seen the use of queues in Chapter 10, Working with Threads in Python. All pickleable objects in Python can be passed through a Queue object; in this section, we will be using queues to pass messages back and forth between processes.

Using a message queue for interprocess communication is preferred over having shared resources since, if certain processes mishandle and corrupt...