Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
About Packt


In this chapter, we discussed the bridge pattern. Sharing similarities with the adapter pattern, the bridge pattern is different from it, in the sense that it is used up-front to define an abstraction and its implementation in a decoupled way so that both can vary independently.

The bridge pattern is useful when writing software for problem domains such as operation systems and device drivers, GUIs, and website builders where we have multiple themes and we need to change the theme of a website based on certain properties.

To help you understand this pattern, we discussed an example in the domain of content extraction and management, where we defined an interface for the abstraction, an interface for the implementor, and two implementations.

In the next chapter, we are going to cover the facade pattern.