Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
About Packt


Algorithmic optimization can improve how your application scales as we process increasingly large data. In this chapter, we demonstrated use-cases and running times of the most common data structures available in Python, such as lists, deques, dictionaries, heaps, and tries. We also covered caching, a technique that can be used to trade some space, in memory or on-disk, in exchange for increased responsiveness of an application. We also demonstrated how to get modest speed gains by replacing for-loops with fast constructs, such as list comprehensions and generator expressions.

In the subsequent chapters, we will learn how to improve performance further using numerical libraries such as numpy, and how to write extension modules in a lower-level language with the help of Cython.