Book Image

Natural Language Processing with TensorFlow

By : Motaz Saad, Thushan Ganegedara
Book Image

Natural Language Processing with TensorFlow

By: Motaz Saad, Thushan Ganegedara

Overview of this book

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.
Table of Contents (16 chapters)
Natural Language Processing with TensorFlow
Contributors
Preface
Index

Other variants of LSTMs


Though we mainly focus on the standard LSTM architecture, many variants have emerged that either simplify the complex architecture found in standard LSTMs or produce better performance or both. We will look at two variants that introduce structural modifications to the cell architecture of LSTM: peephole connections and GRUs.

Peephole connections

Peephole connections allow gates not only to see the current input and the previous final hidden state but also the previous cell state. This increases the number of weights in the LSTM cell. Having such connections have shown to produce better results. The equations would look like these:

Let's briefly look at how this helps the LSTM perform better. So far, the gates see the current input and final hidden state, but not the cell state. However, in this configuration, if the output gate is close to zero, even when the cell state contains important information crucial for better performance, the final hidden state will be close...