Book Image

Keras Reinforcement Learning Projects

By : Giuseppe Ciaburro
Book Image

Keras Reinforcement Learning Projects

By: Giuseppe Ciaburro

Overview of this book

Reinforcement learning has evolved a lot in the last couple of years and proven to be a successful technique in building smart and intelligent AI networks. Keras Reinforcement Learning Projects installs human-level performance into your applications using algorithms and techniques of reinforcement learning, coupled with Keras, a faster experimental library. The book begins with getting you up and running with the concepts of reinforcement learning using Keras. You’ll learn how to simulate a random walk using Markov chains and select the best portfolio using dynamic programming (DP) and Python. You’ll also explore projects such as forecasting stock prices using Monte Carlo methods, delivering vehicle routing application using Temporal Distance (TD) learning algorithms, and balancing a Rotating Mechanical System using Markov decision processes. Once you’ve understood the basics, you’ll move on to Modeling of a Segway, running a robot control system using deep reinforcement learning, and building a handwritten digit recognition model in Python using an image dataset. Finally, you’ll excel in playing the board game Go with the help of Q-Learning and reinforcement learning algorithms. By the end of this book, you’ll not only have developed hands-on training on concepts, algorithms, and techniques of reinforcement learning but also be all set to explore the world of AI.
Table of Contents (13 chapters)

Simulating Random Walks

Stochastic processes involve systems that evolve over time (but also more generally in space) according to probabilistic laws. Such systems or models describe the complex phenomena of the real world that have the possibility of being random. These phenomena are more frequent than we can believe. We encounter these phenomena when the quantities we are interested in are not predictable with absolute certainty. However, when such phenomena show a variability of possible outcomes that can be somehow explained or described, then we can introduce a probabilistic model of the phenomenon.

For example, say that we are examining the motion involved in a random walking movement. We study the motion of an object that is constrained to move along a straight line in the two directions allowed. At each movement, it moves randomly to the right or left, each step being...