Book Image

Python Deep Learning - Second Edition

By : Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
Book Image

Python Deep Learning - Second Edition

By: Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca

Overview of this book

With the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands. With this book, you’ll explore deep learning, and learn how to put machine learning to use in your projects. This second edition of Python Deep Learning will get you up to speed with deep learning, deep neural networks, and how to train them with high-performance algorithms and popular Python frameworks. You’ll uncover different neural network architectures, such as convolutional networks, recurrent neural networks, long short-term memory (LSTM) networks, and capsule networks. You’ll also learn how to solve problems in the fields of computer vision, natural language processing (NLP), and speech recognition. You'll study generative model approaches such as variational autoencoders and Generative Adversarial Networks (GANs) to generate images. As you delve into newly evolved areas of reinforcement learning, you’ll gain an understanding of state-of-the-art algorithms that are the main components behind popular games Go, Atari, and Dota. By the end of the book, you will be well-versed with the theory of deep learning along with its real-world applications.
Table of Contents (12 chapters)

DL in the Cloud

In this chapter, we are discussing a serious topic, AVs and how to apply DL techniques in them. Let's see how to approach this task in practice. First, let's observe that in deep networks (as with most ML algorithms), we have two phases—training and inference. In most production environments, the network is trained once, and then used only in inference mode to solve tasks. If we obtain additional training data during the course of events, we can eventually train the network again (for example, using transfer learning). Then, we can embed the new model in the production environment until we need to retrain it again and so on. The alternative to this is incremental learning, having the model (network) constantly learn from new data, as it comes from the environment.

Although this approach is tempting, it has a few disadvantages, which are as follows...