Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

Chapter 11: The RISC-V Architecture and Instruction Set

This chapter introduces the exciting, relatively new RISC-V (pronounced risk five) processor architecture and its instruction set. RISC-V is a completely open source specification for a reduced instruction set processor. A complete user-mode (non-privileged) instruction set specification has been released, and several inexpensive hardware implementations of this architecture are currently available. Work is ongoing to develop specifications for a number of instruction set extensions to support general-purpose computing, high-performance computing, and embedded applications. Commercially available processors implement many of these developmental extensions.

The following topics will be covered in this chapter:

  • The RISC-V architecture and features
  • The RISC-V base instruction set
  • RISC-V extensions
  • 64-bit RISC-V
  • Standard RISC-V configurations
  • RISC-V assembly language
  • Implementing RISC-V in a field...