Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

The ongoing evolution of computer architectures

Chapter 1, Introducing Computer Architecture, presented a brief history of automated computing devices from the mechanical design of Babbage's Analytical Engine to the advent of the x86 architecture that continues to serve as the basis for most modern personal computers. This progress has relied on several groundbreaking technological achievements, most notably the invention of the transistor and the development of integrated circuit manufacturing processes.

Through the decades since the introduction of the Intel 4004 in 1971, processors have grown dramatically in terms of the sheer number of transistors and other circuit components integrated on a single-circuit die. In concert with the growth in the number of circuit elements per chip, the clock speed of modern devices has increased by several orders of magnitude.

This increase in processor capability and instruction execution speed has unleashed the growth of software development...