Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

Summary

This chapter began with a brief history of automated computing devices and described significant technological advances that drove leaps in computational capability. A discussion of Moore's law was followed with an assessment of its applicability over previous decades and implications for the future. The basic concepts of computer architecture were introduced through a discussion of the 6502 microprocessor. The history of computer architecture is fascinating, and I encourage you to explore it further.

The next chapter will introduce digital logic, beginning with the properties of basic electrical circuits and proceeding through the design of digital subsystems used in modern processors. You will learn about logic gates, flip-flops, and digital circuits including multiplexers, shift registers, and adders. It includes an introduction to hardware description languages, which are specialized computer languages used in the design of complex digital devices such as computer processors.