Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

Extrapolating from current trends

The capabilities of current-generation processor technology are beginning to push up against some significant physical limits that we can expect to constrain the rate of growth going forward. These limits certainly will not lead to an abrupt end of improvements in circuit density and clock speed; rather, capability improvements for future processor generations may take place in directions that differ from traditional semiconductor capability improvement patterns. To look more closely at future processor performance growth expectations, we begin by returning to Moore's law and examining its applicability to the future of semiconductor technology.

Moore's law revisited

The revised version of Moore's law, published by Gordon Moore in 1975, predicted the number of integrated circuit components per device would double roughly every two years. This law has demonstrated remarkable predictive accuracy for several decades, but as of 2015...