Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

The RISC-V base instruction set

The RISC-V base instruction set is composed of just 47 instructions. Eight are system instructions that perform system calls and access performance counters. The remaining 39 instructions fall into the categories of computational instructions, control flow instructions, and memory access instructions. We will examine each of these categories in the following sections.

Computational instructions

All of the computational instructions except lui and auipc use the three-operand form. The first operand is the destination register, the second is a source register, and the third operand is either a second source register or an immediate value. Instruction mnemonics using an immediate value (except for auipc) end with the letter i. This is a list of the instructions and their functions:

  • add, addi, sub: Perform addition and subtraction. The immediate value in the addi instruction is a 12-bit signed value. The sub instruction subtracts the second...