Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

Chapter 2: Digital Logic

This chapter builds upon the introductory topics presented in Chapter 1, Introducing Computer Architecture and provides a firm understanding of the digital building blocks used in the design of modern processors. We begin with a discussion of the properties of electrical circuits, before introducing transistors and examining their use as switching elements in logic gates. We then construct latches, flip-flops, and ring counters from the basic logic gates. More complex components, including registers and adders, are developed by combining the devices introduced earlier. The concept of sequential logic, meaning logic that contains state information that varies over time, is developed. The chapter ends with an introduction to hardware description languages, which are the preferred design method for complex digital devices.

The following topics will be covered in this chapter:

  • Electrical circuits
  • The transistor
  • Logic gates
  • Latches
  • Flip...