Book Image

Practical Convolutional Neural Networks

By : Mohit Sewak, Md. Rezaul Karim, Pradeep Pujari
Book Image

Practical Convolutional Neural Networks

By: Mohit Sewak, Md. Rezaul Karim, Pradeep Pujari

Overview of this book

Convolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, medical discoveries, innovative eCommerce and more.You will learn to create innovative solutions around image and video analytics to solve complex machine learning and computer vision related problems and implement real-life CNN models. This book starts with an overview of deep neural networkswith the example of image classification and walks you through building your first CNN for human face detector. We will learn to use concepts like transfer learning with CNN, and Auto-Encoders to build very powerful models, even when not much of supervised training data of labeled images is available. Later we build upon the learning achieved to build advanced vision related algorithms for object detection, instance segmentation, generative adversarial networks, image captioning, attention mechanisms for vision, and recurrent models for vision. By the end of this book, you should be ready to implement advanced, effective and efficient CNN models at your professional project or personal initiatives by working on complex image and video datasets.
Table of Contents (11 chapters)

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Neural Network Programming with Tensorflow
Rajdeep Dua, Manpreet Singh Ghotra

ISBN: 978-1-78839-039-2

  • Learn Linear Algebra and mathematics behind neural network.
  • Dive deep into Neural networks from the basic to advanced concepts like CNN, RNN Deep Belief Networks, Deep Feedforward Networks.
  • Explore Optimization techniques for solving problems like Local minima, Global minima, Saddle points
  • Learn through real world examples like Sentiment Analysis.
  • Train different types of generative models and explore autoencoders.
  • Explore TensorFlow as an example of deep learning implementation.

TensorFlow 1.x Deep Learning Cookbook
Antonio Gulli, Amita Kapoor

ISBN: 978-1-78829-359-4

  • Install TensorFlow and use it for CPU and GPU operations
  • Implement DNNs and apply them to solve different...