Book Image

Hands-On Data Science with Anaconda

By : Yuxing Yan, James Yan
Book Image

Hands-On Data Science with Anaconda

By: Yuxing Yan, James Yan

Overview of this book

Anaconda is an open source platform that brings together the best tools for data science professionals with more than 100 popular packages supporting Python, Scala, and R languages. Hands-On Data Science with Anaconda gets you started with Anaconda and demonstrates how you can use it to perform data science operations in the real world. The book begins with setting up the environment for Anaconda platform in order to make it accessible for tools and frameworks such as Jupyter, pandas, matplotlib, Python, R, Julia, and more. You’ll walk through package manager Conda, through which you can automatically manage all packages including cross-language dependencies, and work across Linux, macOS, and Windows. You’ll explore all the essentials of data science and linear algebra to perform data science tasks using packages such as SciPy, contrastive, scikit-learn, Rattle, and Rmixmod. Once you’re accustomed to all this, you’ll start with operations in data science such as cleaning, sorting, and data classification. You’ll move on to learning how to perform tasks such as clustering, regression, prediction, and building machine learning models and optimizing them. In addition to this, you’ll learn how to visualize data using the packages available for Julia, Python, and R.
Table of Contents (15 chapters)

Model selection

When finding a good model, sometimes we face under fitting and over fitting. The first example is borrowed; you can download the program at http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html#sphx-glr-auto-examples-model-selection-plot-underfitting-overfitting-py. It demonstrates the problems of under fitting and over fitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The true function is given here:

In the following program, we try to use linear and polynomial models to approximate the equation. The slightly modified code is shown here. The program tries to show the impact of different models in terms of under-fitting and over-fitting:

import sklearn
import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import...