Book Image

OpenCV 4 Computer Vision Application Programming Cookbook - Fourth Edition

By : David Millán Escrivá, Robert Laganiere
Book Image

OpenCV 4 Computer Vision Application Programming Cookbook - Fourth Edition

By: David Millán Escrivá, Robert Laganiere

Overview of this book

OpenCV is an image and video processing library used for all types of image and video analysis. Throughout the book, you'll work with recipes to implement a variety of tasks. With 70 self-contained tutorials, this book examines common pain points and best practices for computer vision (CV) developers. Each recipe addresses a specific problem and offers a proven, best-practice solution with insights into how it works, so that you can copy the code and configuration files and modify them to suit your needs. This book begins by guiding you through setting up OpenCV, and explaining how to manipulate pixels. You'll understand how you can process images with classes and count pixels with histograms. You'll also learn detecting, describing, and matching interest points. As you advance through the chapters, you'll get to grips with estimating projective relations in images, reconstructing 3D scenes, processing video sequences, and tracking visual motion. In the final chapters, you'll cover deep learning concepts such as face and object detection. By the end of this book, you'll have the skills you need to confidently implement a range of computer vision algorithms to meet the technical requirements of your complex CV projects.
Table of Contents (17 chapters)

Accessing pixel values

In order to access each individual element of a matrix, you just need to specify its row and column numbers. The corresponding element will be returned, which can be a single numerical value or a vector of values in the case of a multichannel image.

Getting ready

To illustrate the direct access to pixel values, we will create a simple function that adds salt-and-pepper noise to an image. As the name suggests, salt-and-pepper noise is a particular type of noise in which some randomly selected pixels are replaced by a white or a black pixel. This type of noise can occur in faulty communications when the value of some pixels is lost during the transmission. In our case, we will simply randomly select a...