Book Image

Machine Learning Algorithms - Second Edition

Book Image

Machine Learning Algorithms - Second Edition

Overview of this book

Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight. This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you’ll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture. By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.
Table of Contents (19 chapters)

Summary

In this final chapter, we discussed the main elements of machine learning architecture, considering some common scenarios and the procedures that are normally employed to prevent issues and improve the global performance. None of these steps should be discarded without a careful evaluation because the success of a model is determined by the joint action of many parameters, and hyperparameters, and finding the optimal final configuration starts with considering all possible preprocessing steps.

We saw that a grid search is a powerful investigation tool and that it's often a good idea to use it together with a complete set of alternative pipelines (with or without feature unions), so as to find the best solution in the context of a global scenario. Modern personal computers are fast enough to test hundreds of combinations in a few hours, and when the datasets are too...