Book Image

Machine Learning Algorithms - Second Edition

Book Image

Machine Learning Algorithms - Second Edition

Overview of this book

Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight. This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you’ll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture. By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.
Table of Contents (19 chapters)

Linear Classification Algorithms

This chapter begins by analyzing linear classification problems, with a particular focus on logistic regression (despite its name, it's a classification algorithm) and the stochastic gradient descent (SGD) approach. Even if these strategies appear too simple, they're still the main choices in many classification tasks.

Speaking of which, it's useful to remember a very important philosophical principle: Occam's razor.

In our context, it states that the first choice must always be the simplest and only if it doesn't fit, it's necessary to move on to more complex models. In the second part of the chapter, we're going to discuss some common metrics that are helpful when evaluating a classification task. They are not limited to linear models, so we use them when talking about different strategies as well.

In particular...