Book Image

Hands-On Neural Networks with Keras

By : Niloy Purkait
Book Image

Hands-On Neural Networks with Keras

By: Niloy Purkait

Overview of this book

Neural networks are used to solve a wide range of problems in different areas of AI and deep learning. Hands-On Neural Networks with Keras will start with teaching you about the core concepts of neural networks. You will delve into combining different neural network models and work with real-world use cases, including computer vision, natural language understanding, synthetic data generation, and many more. Moving on, you will become well versed with convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, autoencoders, and generative adversarial networks (GANs) using real-world training datasets. We will examine how to use CNNs for image recognition, how to use reinforcement learning agents, and many more. We will dive into the specific architectures of various networks and then implement each of them in a hands-on manner using industry-grade frameworks. By the end of this book, you will be highly familiar with all prominent deep learning models and frameworks, and the options you have when applying deep learning to real-world scenarios and embedding artificial intelligence as the core fabric of your organization.
Table of Contents (16 chapters)
Free Chapter
1
Section 1: Fundamentals of Neural Networks
5
Section 2: Advanced Neural Network Architectures
10
Section 3: Hybrid Model Architecture
13
Section 4: Road Ahead

Generative Networks

In the last chapter, we submerged ourselves in the world of autoencoding neural networks. We saw how these models can be used to estimate parameterized functions capable of reconstructing given inputs with respect to target outputs. While at prima facie this may seem trivial, we now know that this manner of self-supervised encoding has several theoretical and practical implications.

In fact, from a machine learning (ML) perspective, the ability to approximate a connected set of points in a higher dimensional space on to a lower dimensional space (that is, manifold learning) has several advantages, ranging from higher data storage efficiency to more efficient memory consumption. Practically speaking, this allows us to discover ideal coding schemes for different types of data, or to perform dimensionality reduction thereupon, for use cases such as Principal Component...