Book Image

Hands-On Neural Networks with Keras

By : Niloy Purkait
Book Image

Hands-On Neural Networks with Keras

By: Niloy Purkait

Overview of this book

Neural networks are used to solve a wide range of problems in different areas of AI and deep learning. Hands-On Neural Networks with Keras will start with teaching you about the core concepts of neural networks. You will delve into combining different neural network models and work with real-world use cases, including computer vision, natural language understanding, synthetic data generation, and many more. Moving on, you will become well versed with convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, autoencoders, and generative adversarial networks (GANs) using real-world training datasets. We will examine how to use CNNs for image recognition, how to use reinforcement learning agents, and many more. We will dive into the specific architectures of various networks and then implement each of them in a hands-on manner using industry-grade frameworks. By the end of this book, you will be highly familiar with all prominent deep learning models and frameworks, and the options you have when applying deep learning to real-world scenarios and embedding artificial intelligence as the core fabric of your organization.
Table of Contents (16 chapters)
Free Chapter
1
Section 1: Fundamentals of Neural Networks
5
Section 2: Advanced Neural Network Architectures
10
Section 3: Hybrid Model Architecture
13
Section 4: Road Ahead

Gradient weighted class activation mapping

Another nifty gradient-based method is the gradient weighted class activation map (Grad-CAM). This is useful specifically if you have input images with entities belonging to several output classes and you want to visualize which areas in the input picture your network associates most with a specific output class. This technique leverages the class-specific gradient information flowing into the final convolutional layer of a CNN to produce a coarse localization map of the important regions in the image. In other words, we feed our network an input image and take the output activation map of a convolution layer by weighing every channel of the output (that is, the activation maps) by the gradient of the output class with respect to the channel. This allows us to better utilize the spatial information corresponding to what our network pays...