Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Machine Learning Cookbook
  • Table Of Contents Toc
Python Machine Learning Cookbook

Python Machine Learning Cookbook - Second Edition

By : Giuseppe Ciaburro, Joshi
close
close
Python Machine Learning Cookbook

Python Machine Learning Cookbook

By: Giuseppe Ciaburro, Joshi

Overview of this book

This eagerly anticipated second edition of the popular Python Machine Learning Cookbook will enable you to adopt a fresh approach to dealing with real-world machine learning and deep learning tasks. With the help of over 100 recipes, you will learn to build powerful machine learning applications using modern libraries from the Python ecosystem. The book will also guide you on how to implement various machine learning algorithms for classification, clustering, and recommendation engines, using a recipe-based approach. With emphasis on practical solutions, dedicated sections in the book will help you to apply supervised and unsupervised learning techniques to real-world problems. Toward the concluding chapters, you will get to grips with recipes that teach you advanced techniques including reinforcement learning, deep neural networks, and automated machine learning. By the end of this book, you will be equipped with the skills you need to apply machine learning techniques and leverage the full capabilities of the Python ecosystem through real-world examples.
Table of Contents (18 chapters)
close
close

Implementing optimization algorithms in ANN

So far, we have built several neural networks and obtained satisfactory overall performances. We have evaluated the model's performance using the loss function, which is a mathematical way to measure how wrong our predictions are. To improve the performance of a model based on neural networks, during the training process, weights are modified to try to minimize the loss function and make our predictions as correct as possible. To do this, optimizers are used: they are algorithms that regulate the parameters of the model, updating it in relation to what is returned by the loss function. In practice, optimizers shape the model in its most accurate form possible by overcoming weights: The loss function tells the optimizer when it is moving in the right or wrong direction.

...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Machine Learning Cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon