Book Image

The Deep Learning with Keras Workshop

By : Matthew Moocarme, Mahla Abdolahnejad, Ritesh Bhagwat
1 (1)
Book Image

The Deep Learning with Keras Workshop

1 (1)
By: Matthew Moocarme, Mahla Abdolahnejad, Ritesh Bhagwat

Overview of this book

New experiences can be intimidating, but not this one! This beginner’s guide to deep learning is here to help you explore deep learning from scratch with Keras, and be on your way to training your first ever neural networks. What sets Keras apart from other deep learning frameworks is its simplicity. With over two hundred thousand users, Keras has a stronger adoption in industry and the research community than any other deep learning framework. The Deep Learning with Keras Workshop starts by introducing you to the fundamental concepts of machine learning using the scikit-learn package. After learning how to perform the linear transformations that are necessary for building neural networks, you'll build your first neural network with the Keras library. As you advance, you'll learn how to build multi-layer neural networks and recognize when your model is underfitting or overfitting to the training data. With the help of practical exercises, you’ll learn to use cross-validation techniques to evaluate your models and then choose the optimal hyperparameters to fine-tune their performance. Finally, you’ll explore recurrent neural networks and learn how to train them to predict values in sequential data. By the end of this book, you'll have developed the skills you need to confidently train your own neural network models.
Table of Contents (11 chapters)
Preface

Linear Transformations

In this section, we will introduce linear transformations. Linear transformations are the backbone of modeling with ANNs. In fact, all the processes of ANN modeling can be thought of as a series of linear transformations. The working components of linear transformations are scalars, vectors, matrices, and tensors. Operations such as addition, transposition, and multiplication are performed on these components.

Scalars, Vectors, Matrices, and Tensors

Scalars, vectors, matrices, and tensors are the actual components of any deep learning model. Having a fundamental understanding of how to utilize these components, as well as the operations that can be performed on them, is key to understanding how ANNs operate. Scalars, vectors, and matrices are examples of the general entity known as a tensor, so the term tensors may be used throughout this chapter but may refer to any component. Scalars, vectors, and matrices refer to tensors with a specific number...