Book Image

The Deep Learning with Keras Workshop

By : Matthew Moocarme, Mahla Abdolahnejad, Ritesh Bhagwat
1 (1)
Book Image

The Deep Learning with Keras Workshop

1 (1)
By: Matthew Moocarme, Mahla Abdolahnejad, Ritesh Bhagwat

Overview of this book

New experiences can be intimidating, but not this one! This beginner’s guide to deep learning is here to help you explore deep learning from scratch with Keras, and be on your way to training your first ever neural networks. What sets Keras apart from other deep learning frameworks is its simplicity. With over two hundred thousand users, Keras has a stronger adoption in industry and the research community than any other deep learning framework. The Deep Learning with Keras Workshop starts by introducing you to the fundamental concepts of machine learning using the scikit-learn package. After learning how to perform the linear transformations that are necessary for building neural networks, you'll build your first neural network with the Keras library. As you advance, you'll learn how to build multi-layer neural networks and recognize when your model is underfitting or overfitting to the training data. With the help of practical exercises, you’ll learn to use cross-validation techniques to evaluate your models and then choose the optimal hyperparameters to fine-tune their performance. Finally, you’ll explore recurrent neural networks and learn how to train them to predict values in sequential data. By the end of this book, you'll have developed the skills you need to confidently train your own neural network models.
Table of Contents (11 chapters)
Preface

The Architecture of a CNN

The main components of CNN architecture are as follows:

  • Input image
  • Convolutional layer
  • Pooling layer
  • Flattening

Input Image

An input image forms the first component of a CNN architecture. An image can be of any type: a human, an animal, scenery, a medical X-ray image, and so on. Each image is converted into a mathematical matrix of zeros and ones. The following figure explains how a computer views an image of the letter T.

All the blocks that have a value of one represent the data, while the zeros represent blank space:

Figure 7.3: Matrix for the letter 'T'

Convolution Layer

The convolution layer is the place where image processing starts. A convolution layer consists of two parts:

  • Feature detector or filter
  • Feature map

Feature detector or a filter: This is a matrix or pattern that you put on an image to transform it into a feature map:

Figure...