Book Image

Machine Learning with R - Fourth Edition

By : Brett Lantz
5 (1)
Book Image

Machine Learning with R - Fourth Edition

5 (1)
By: Brett Lantz

Overview of this book

Dive into R with this data science guide on machine learning (ML). Machine Learning with R, Fourth Edition, takes you through classification methods like nearest neighbor and Naive Bayes and regression modeling, from simple linear to logistic. Dive into practical deep learning with neural networks and support vector machines and unearth valuable insights from complex data sets with market basket analysis. Learn how to unlock hidden patterns within your data using k-means clustering. With three new chapters on data, you’ll hone your skills in advanced data preparation, mastering feature engineering, and tackling challenging data scenarios. This book helps you conquer high-dimensionality, sparsity, and imbalanced data with confidence. Navigate the complexities of big data with ease, harnessing the power of parallel computing and leveraging GPU resources for faster insights. Elevate your understanding of model performance evaluation, moving beyond accuracy metrics. With a new chapter on building better learners, you’ll pick up techniques that top teams use to improve model performance with ensemble methods and innovative model stacking and blending techniques. Machine Learning with R, Fourth Edition, equips you with the tools and knowledge to tackle even the most formidable data challenges. Unlock the full potential of machine learning and become a true master of the craft.
Table of Contents (18 chapters)
16
Other Books You May Enjoy
17
Index

Join our book community on Discord

https://packt.link/EarlyAccessCommunity

The late science fiction author Arthur C. Clarke wrote, "Any sufficiently advanced technology is indistinguishable from magic." This chapter covers a pair of machine learning methods that may appear at first glance to be magic. Though they are extremely powerful, their inner workings can be difficult to understand.

In engineering, these are referred to as black box processes because the mechanism that transforms the input into the output is obfuscated by an imaginary box. For instance, the black box of closed-source software intentionally conceals proprietary algorithms, the black box of political lawmaking is rooted in bureaucratic processes, and the black box of sausage making involves a bit of purposeful (but tasty) ignorance. In the case of machine learning, the black box is due to the complex mathematics allowing them to function.

Although they may not be easy to understand, it is dangerous to...