Book Image

Machine Learning with R - Fourth Edition

By : Brett Lantz
5 (1)
Book Image

Machine Learning with R - Fourth Edition

5 (1)
By: Brett Lantz

Overview of this book

Dive into R with this data science guide on machine learning (ML). Machine Learning with R, Fourth Edition, takes you through classification methods like nearest neighbor and Naive Bayes and regression modeling, from simple linear to logistic. Dive into practical deep learning with neural networks and support vector machines and unearth valuable insights from complex data sets with market basket analysis. Learn how to unlock hidden patterns within your data using k-means clustering. With three new chapters on data, you’ll hone your skills in advanced data preparation, mastering feature engineering, and tackling challenging data scenarios. This book helps you conquer high-dimensionality, sparsity, and imbalanced data with confidence. Navigate the complexities of big data with ease, harnessing the power of parallel computing and leveraging GPU resources for faster insights. Elevate your understanding of model performance evaluation, moving beyond accuracy metrics. With a new chapter on building better learners, you’ll pick up techniques that top teams use to improve model performance with ensemble methods and innovative model stacking and blending techniques. Machine Learning with R, Fourth Edition, equips you with the tools and knowledge to tackle even the most formidable data challenges. Unlock the full potential of machine learning and become a true master of the craft.
Table of Contents (18 chapters)
16
Other Books You May Enjoy
17
Index

Understanding clustering

Clustering is an unsupervised machine learning task that automatically divides the data into clusters, or groups of similar items. It does this without having been told how the groups should look ahead of time. Because we do not tell the machine specifically what we’re looking for, clustering is used for knowledge discovery rather than prediction. It provides an insight into the natural groupings found within data.

Without advanced knowledge of what comprises a cluster, how can a computer possibly know where one group ends and another begins? The answer is simple: clustering is guided by the principle that items inside a cluster should be very similar to each other, but very different from those outside. The definition of similarity might vary across applications, but the basic idea is always the same: group the data such that related elements are placed together.

The resulting clusters can then be used for action. For instance, you might find...