Book Image

Machine Learning with PyTorch and Scikit-Learn

By : Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili
5 (7)
Book Image

Machine Learning with PyTorch and Scikit-Learn

5 (7)
By: Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Overview of this book

Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (22 chapters)
20
Other Books You May Enjoy
21
Index

Introducing the self-attention mechanism

In the previous section, we saw that attention mechanisms can help RNNs with remembering context when working with long sequences. As we will see in the next section, we can have an architecture entirely based on attention, without the recurrent parts of an RNN. This attention-based architecture is known as transformer, and we will discuss it in more detail later.

In fact, transformers can appear a bit complicated at first glance. So, before we discuss transformers in the next section, let us dive into the self-attention mechanism used in transformers. In fact, as we will see, this self-attention mechanism is just a different flavor of the attention mechanism that we discussed in the previous section. We can think of the previously discussed attention mechanism as an operation that connects two different modules, that is, the encoder and decoder of the RNN. As we will see, self-attention focuses only on the input and captures only dependencies...