Book Image

Machine Learning with PyTorch and Scikit-Learn

By : Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili
5 (7)
Book Image

Machine Learning with PyTorch and Scikit-Learn

5 (7)
By: Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Overview of this book

Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (22 chapters)
20
Other Books You May Enjoy
21
Index

Reinforcement learning algorithms

In this section, we will cover a series of learning algorithms. We will start with dynamic programming, which assumes that the transition dynamics—or the environment dynamics, that is, —are known. However, in most RL problems, this is not the case. To work around the unknown environment dynamics, RL techniques were developed that learn through interacting with the environment. These techniques include Monte Carlo (MC), temporal difference (TD) learning, and the increasingly popular Q-learning and deep Q-learning approaches.

Figure 19.5 describes the course of advancing RL algorithms, from dynamic programming to Q-learning:

Figure 19.5: Different types of RL algorithms

In the following sections of this chapter, we will step through each of these RL algorithms. We will start with dynamic programming, before moving on to MC, and finally on to TD and its branches of on-policy SARSA (state–action–reward–...